Эффективное промо: разобраться и перенастроить

В каком блоке бизнеса и к какой задаче применить data science, чтобы окупить затраты

Почему продуктовые ретейлеры испытывают трудности с промо, и как data science может помочь их решить? Изучаем опыт оптимизации промо с помощью углубленной аналитики.

Давайте начнем с классического вопроса. Для чего нужна углубленная аналитика? Почему не хватает традиционных подходов, основанных на экспертизе?

Ответ прост - на динамику продаж тысяч товаров воздействуют сотни факторов, от места на полке и текущих промоактивностей до погоды и политической ситуации. Сопоставив эти параметры и проанализировав механику их взаимного влияния, розничная сеть может выйти как на новый уровень понимания своего клиента, так и на заметно более высокие показатели доходов. Единственное — это возможно только с помощью data science.

Еще в доцифровую эпоху в ретейле собирали и анализировали данные, чтобы лучше разбираться в потребностях покупателей, но технологическая революция расширила эти возможности. Как и во всех других индустриях, в ретейле случился ряд изменений. Появились новые источники данных, способы их обогащения и главное — компьютерные мощности, которые позволяют обрабатывать терабайты информации за считаные секунды. Наступила эра углубленной аналитики — инструментов data science для работы с большими массивами внутренних и внешних данных.

Часто возникает вопрос: с чего начать? В каком блоке бизнеса и к какой задаче применить data science, чтобы окупить затраты и заложить правильную основу для работы с углубленной аналитикой в будущем?

Промо, ассортимент и ценообразование — основные рычаги коммерческого блока в ретейле. Часто начинают именно с промо, поскольку этот инструмент является неотъемлемой частью коммерческой стратегии практически всех розничных сетей, а эффект от него можно получить достаточно быстро.

Зачем сетям промоакции

Существует заблуждение, что ретейлеры привлекают покупателей большими скидками, чтобы избавиться от некачественных товаров. Это не так. В фешен-ретейле есть понятие «распродажи», где цель похожая – необходимо избавиться от коллекции, которая теряет актуальность. В продуктовом же ретейле такой практики нет, цель – нарастить продажи и маржу. У промоактивности ретейлеров два основных драйвера:

· Извлечение прямой выгоды за счёт эластичности спроса. При снижении цены на товар его продажи растут; часто рост перекрывает величину скидки, и по итогам сеть остается в выигрыше

· Вынужденное следование за другими игроками на рынке в борьбе за трафик. Если прямой конкурент проводит промо на «каждый второй» товар в категории, не делать промоакции в этой категории у себя может быть опасно, даже если они не приносят никакого положительного экономического эффекта»

В Восточной Европе и Центральной Азии промомаркетинг получил ускорение из-за экономических кризисов. Слабые валюты и зависимость от закупок импортного сырья привели к удорожанию производства многих товаров и повышению конечной цены для потребителей.

Но темпы роста инфляции так и не дали производителям и ретейлерам приучить людей покупать товары по новым ценам. Чтобы поддержать продажи на фоне падения покупательской способности, сети стали наращивать промоактивности. Конкуренция за покупателя переросла в настоящие промовойны.

Покупатели подсели на скидки, а для производителей и ретейлеров промо стало ключевой составляющей ценовой стратегии, в результате чего и те, и те рискуют потерять в маржинальности. По данным одного из отчетов Nielsen, порядка 60% промоакций убыточны.

Это напрямую связано с тем, что в ретейле пока плохо умеют работать с богатыми массивами данных — а они есть в распоряжении каждой сети. Это чеки, профиль клиента по карте лояльности, исторические данные по промокампаниям. С их помощью можно посчитать полный эффект промо.

Три эффекта промо: декомпозируя айсберг

На полках среднестатистического супермаркета 5-10 тыс. товаров, при этом в промо одновременно стоят сотни SKU. И запуск акции на один товар неминуемо влияет на динамику продаж других.

В то время как большинство сетей ориентируются лишь на прямой эффект от промо — примерно оцененный прирост продаж по товару — это лишь вершина айсберга. Параллельно промо порождает косвенное влияние на другие товары. Среди таких косвенных эффектов каннибализация, закупка впрок и галло-эффект. Как и в случае с реальным айсбергом, скрытая от глаз часть может быть равной и даже больше той, что на поверхности.

Первый эффект называется галло-эффект. Промо увеличивает продажи других товаров. Например, вместе с промо на мясо для шашлыков перед майскими праздниками увеличиваются продажи кетчупа. При этом на сам кетчуп промо вводить необязательно – если человек покупает мясо, то с большой вероятностью кетчуп тоже попадет в корзину.

Оценка галло-эффекта имеет комплексный характер, так как требует предварительного формирования ассоциативных правил — вычисления поведенческих привычек, взаимосвязи между товарами. С чем чаще всего покупают товар? При этом такая взаимосвязь не симметрична. Купивший бутылку виски с большой вероятностью обнаружит в своей корзине ещё и пару литров колы, а купивший колу дополнит свою корзину бутылкой виски далеко не всегда.

Второй эффект - это каннибализация. Промо снижает продажи других товаров. Например, проведение промоакции на куриные ножки может снизить спрос и на куриное филе, и на красное мясо, и на рыбу.

Ключевая сложность в оценке каннибализации не в том, чтобы вычислить, насколько снизились продажи товаров — на этот вопрос можно ответить методами базовой аналитики. Вопросы калибра углублённой аналитики — это определить, какие промоакции привели к снижению продаж каких товаров, и как это снижение правильно распределить между всеми промоактивностями.

В каждый момент времени в промо находятся от пятидесяти до нескольких сотен товаров. Даже если ограничиться одной категорией «Шоколад и конфеты», то и в ней число товаров в промо может исчисляться десятками. Преследуя цель оценить каннибализацию, вызванную промоакцией на шоколад Lindt, который продавался со скидкой в течение трёх дней, нам предстоит пройти несколько последовательных шагов и ответить на ряд аналитических вопросов.

Значение каннибализации в денежных терминах может достигать 150% от прямого эффекта и в корне менять выводы о том, для каких товаров и категорий стоит проводить промо, а для каких — нет.

Еще один эффект — это закупка впрок. Промо влияет на спрос на товары на недели вперед.

Этот эффект особенно ощутим в сегменте бытовой химии и продуктов, которые могут храниться долго (так называемые категории с нерасширяемым спросом). Вместо того, чтобы стимулировать потребление товара, промоакция только сдвигает спрос во времени.

Резюмируя, планирование промо — комплексная математическая задача. Она требует точных расчетов, которые невозможно сделать при помощи стандартных аналитических инструментов, поскольку переменных слишком много, а массивы данных слишком велики.

При этом объемы работы категорийного менеджера не позволяют проводить трудоемкие расчеты вручную. Промо в его календаре конкурирует с десятками других вопросов. Несколько товарных категорий с сотнями SKU в каждой, договорные отношения с поставщиками, определение ассортимента и ценовой стратегии на тысячи магазинов — все это в его ведении.

Для облегчения работы категорийных менеджеров многие компании начинают использовать генеративный ИИ в качестве «второго пилота». Категорийный менеджер может задавать основные вопросы и мгновенно получать выводы и предложения ИИ по улучшению. Это позволяет достичь двух эффектов. Во-первых, это значительно быстрее. Не нужно ждать несколько часов или дней, пока аналитик возьмет задачу в работу, ответ от ИИ будет в течение 5 минут. Во-вторых, ИИ сам может подсветить «области повышенного риска», на которые стоит обратить внимание. Например, сразу сказать, что показатели промо упали, потому что поставщик не завез товар в конкретном регионе. Или потому, что конкуренты «включили» ответное промо. Одним словом – мы видим значительный потенциал, но пока большинство таких решений работают в качестве пилотов.

Эффект от промокампаний, основанных на данных, может достигать 2-3% от общей выручки торговой сети. Для низкомаржинальной индустрии, которой является ретейл, это очень большие цифры.

Авторы:

Денис Емельянцев, партнер McKinsey & Company – руководитель практики коммерческих трансформаций в ретейле, реализовал более 20 коммерческих трансформаций в компаниях Европы, Ближнего Востока, США, Латинской Америки

Дулатбек Икбаев, управляющий партнер McKinsey&Company в Центральной Азии, реализовал более 20 цифровых трансформаций в различных секторах

Дмитрий Устинов, младший партнер McKinsey & Company – эксперт в области цифровых трансформаций и AI, более 15 цифровых трансформаций в В2С-секторе в Европе, США, Латинской Америке

Илья Дуров, руководитель проектов McKinsey & Company – эксперт в области аналитических юз-кейсов в ретейле, более 10 проектов в области ценообразования, промо, оптимизации сети

Алексей Татаренков, team lead команды аналитики данных McKinsey & Company – эксперт в области аналитических юз-кейсов в ретейле, более 10 проектов в области ценообразования, промо, оптимизации сети

При работе с материалами Центра деловой информации Kapital.kz разрешено использование лишь 30% текста с обязательной гиперссылкой на источник. При использовании полного материала необходимо разрешение редакции.
Читать все последние новости ➤